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This paper is concerned with the study of insurance related derivatives on financial
markets that are based on nontradable underlyings, but are correlated with tradable
assets. We calculate exponential utility-based indifference prices, and corresponding
derivative hedges. We use the fact that they can be represented in terms of solutions of
forward-backward stochastic differential equations (FBSDE) with quadratic growth
generators. We derive the Markov property of such FBSDE and generalize results
on the differentiability relative to the initial value of their forward components. In
this case the optimal hedge can be represented by the price gradient multiplied with
the correlation coefficient. This way we obtain a generalization of the classical “delta
hedge” in complete markets.
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1. INTRODUCTION

In recent years more and more financial instruments have been created which are not
derived from exchange traded securities. For instance in 1999 the Chicago Mercantile
Exchange introduced weather futures contracts, the payoffs of which are based on average
temperatures at specified locations. Another example of derivatives with nontradable
underlyings are catastrophe futures based on an insurance loss index regulated by an
independent agency or simply derivatives based on equity indices such as S&P or DAX.

Financial or insurance derivatives of this type are impossible to perfectly hedge, since
it is impossible to trade the underlying variable that carries independent uncertainty. To
circumvent this problem, in practice one looks for a tradable asset that is correlated to the
nontradable underlying of the derivative. Even though investing in the correlated asset
cannot provide a total hedge of the derivative, and a nonhedgeable basis risk remains, it
is better than not hedging at all.

In the following we will investigate utility-based pricing principles for derivatives based
on nontradable underlyings. Moreover we will show how the derivatives can be partially
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hedged by investing in correlated assets. We present explicit hedging strategies that opti-
mize the expected utility of a portfolio of such derivatives. To this end we will establish
some structure and smoothness properties of indifference prices such as the Markov
property and differentiability with respect to the underlyings. Once these properties are
established, we can explicitly describe the optimal hedging strategies in terms of the price
gradient and correlation coefficients. This way we obtain a generalization of the classical
delta hedge of the Black–Scholes model.

The hedging of claims based on nontradable underlyings has already been stud-
ied by many authors, see for example, Henderson and Hobson (2002), Henderson
(2002), Musiela and Zariphopoulou (2004), Davis (2006), Monoyios (2004), Ankirchner,
Imkeller, and Popier (2008). As a common feature of all these papers, optimal hedging
strategies are derived with standard stochastic control techniques. The essential compo-
nents of this analytical approach consist in a formulation of the optimization problem
in terms of Hamilton–Jacobi–Bellman (HJB) partial differential equations, and the use
of a verification theorem and uniqueness result in order to obtain a representation of
the indifference price and the optimal control strategy. We instead employ an approach
with a stochastic focus. It starts with the well-known observation that the maximal ex-
pected exponential utility may be computed by appealing to the martingale optimality
principle which leads to a description of price and optimal hedging strategy in terms
of a forward-backward stochastic differential equation (FBSDE) with a nonlinearity of
quadratic type (see Rouge and El Karoui 2000; Hu, Imkeller, and Müller 2005). This
immediately implies that the utility indifference price, respectively, hedge is equal to the
difference of initial states, respectively, control processes of two FBSDE with a quadratic
nonlinearity in the generator. The forward component is given by a Markov process
describing the nontradable underlying. The main mathematical contribution of this pa-
per is that it provides simple sufficient conditions for general FBSDE with quadratic
nonlinearity to satisfy a Markov property, and—for the BSDE component—to be dif-
ferentiable with respect to the initial condition of the forward equation. The techniques
for proving differentiability of BSDE with quadratic nonlinearity have been developed
independently in Briand and Confortola (2008) and Ankirchner, Imkeller, and Dos Reis
(2007). Unfortunately, the setup of both papers is not general enough to cover the BSDE
needed to calculate exponential indifference prices. Therefore, a slight generalization of
these differentiability results is given in the last section of this paper.

As a consequence of the explicit description of indifference prices and hedges in terms
of the solution processes of the FBSDE, and in view of the smoothness results mentioned,
it is straightforward to describe optimal hedging strategies in terms of the indifference
price gradient and the correlation coefficients explicitly. An economics related contribu-
tion of the paper is that the framework presented allows to refine the results obtained,
for example in Musiela and Zariphopoulou (2004), Davis (2006). First, no longer do we
need to impose any restrictions on the coefficients of the diffusion modeling the tradable
asset price. More importantly, the BSDE techniques allow to deal with multidimensional
underlyings and traded assets. In the approach based on the HJB equation, a solution of
the PDE is obtained by using an exponential Hopf-Cole transformation that in general
seems to require that there exists only one traded asset. In practice many derivatives are
based on more than one underlying, such as spread options or basket options. In order
to illustrate how to hedge with more than one asset, we will study in more detail so-called
crack spreads, which are written for instance on the difference of crude oil futures and
kerosene prices (see Example 2.2 and 5.9).

Finally we address the pricing of derivatives by the marginal utility approach. If a
company wishes to trade risk not covered by securities on an exchange, they are forced
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to go outside the exchange to get tailored products to serve their specific needs. These
deals that do not go through the exchange trading (although the underlyings may be
traded there) and are done directly between buyer and seller are called over-the-counter
(OTC). For example, airlines regularly make this kind of OTC deals in order to protect
themselves against kerosene price fluctuations, which underlines that the amount of
money involved in this type of deals is nonnegligible! Investment banks offering OTC
deals face the problem of finding a fair price of these agreements. Indifference prices
are often a reasonable solution. However, they are not linear! The standard way out,
as suggested in the economics literature, is pricing by marginal utility. The marginal
utility price is the differential quotient of the indifference price with respect to a marginal
amount of the derivative. Here again the first thing to verify is the differentiability of
the FBSDE. This in turn allows to derive the dynamics of the marginal utility price as a
BSDE with a driver satisfying a random Lipschitz condition.

BSDE with generators of quadratic nonlinearity in the control variable (which will in
the sequel sometimes simply be called quadratic BSDE) are described by equations of
the type

Yt = ξ +
∫ T

t
f (s, Ys, Zs) ds −

∫ T

t
Zs dWs, 0 ≤ t ≤ T,

where f is a predictable function satisfying | f (t, y, z)| ≤ C(1 + |y| + |z|2) with some
constant C. Our differentiability results are based on the assumption that the derivative
to be hedged, denoted by ξ , is essentially bounded. This guarantees that the integral
process

∫ ·
0 ZdW is a so-called BMO martingale, and hence the density process of a new

equivalent probability measure, say Q. By switching to the measure Q one can derive
moment estimates needed in order to prove differentiability. The assumption that the
derivative has to be bounded seems to be a disadvantage of using BSDE in the stochastic
approach instead of working with the HJB partial differential equation in the analytical
approach. In practice, this is of no importance.

The paper is organized as follows: in Section 2 we introduce the model, in Section 3
we briefly recall results from Hu et al. (2005) concerning the solution of the problem of
exponential expected utility maximization in terms of stochastic control problems and
FBSDE with nonlinearities of quadratic type. In Section 4 we show structure properties
of indifference prices of derivatives based on a nontradable Markovian index process.
In Section 5 we derive explicit formulas for the optimal hedges of such derivatives, and
in Section 6 we describe the dynamics of the marginal utility price. All the economics
related results are based on mathematical properties of quadratic FBSDE, which will be
proved in the last section. For further details, comments, and complete proofs we refer
to Dos Reis (2010).

2. THE MODEL

Let d ∈ N and let W be a d-dimensional Brownian motion on a probability space
(�,F, P). We denote by (Ft) the completion of the filtration generated by W . Sup-
pose that a derivative with maturity T > 0 is based on a R

m-dimensional nontradable
index (think of a stock, temperature, or loss index) with dynamics

d Rt = b(t, Rt) dt + ρ(t, Rt) dWt,(2.1)
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where b : [0, T] × R
m → R

m and ρ : [0, T] × R
m → R

m×d are measurable deterministic
functions. Throughout we assume that there exists a C ∈ R+ such that for all t ∈ [0, T]
and x, x′ ∈ R

m

(R1)
|b(t, x) − b(t, x′)| + |ρ(t, x) − ρ(t, x′)| ≤ C|x − x′|,

|b(t, x)| + |ρ(t, x)| ≤ C(1 + |x|).
We consider a derivative of the form F(RT), where F : R

m → R is a bounded and
measurable function. Note that at time t, the expected payoff of F(RT), conditioned on
Rt = r , is given by F(Rt,r

T ), where Rt,r is the solution of the SDE

Rt,r
s = r +

∫ s

t
b
(
u, Rt,r

u

)
du +

∫ s

t
ρ
(
u, Rt,r

u

)
dWu, s ∈ [t, T].(2.2)

Our correlated financial market consists of k risky assets and one nonrisky asset. We
use the nonrisky asset as numeraire and suppose that the prices of the risky assets in units
of the numeraire evolve according to the SDE

d Si
t = Si

t (αi (t, Rt) dt + βi (t, Rt) dWt), i = 1, . . . , k,

where αi (t, r ) is the ith component of a measurable and vector-valued map α : [0, T] ×
R

m → R
k and βi (t, r ) is the i-th row of a measurable and matrix-valued map β : [0, T] ×

R
m → R

k×d . Notice that W is the same R
d -dimensional Brownian motion as the one

driving the index process (2.1), and hence the correlation between the index and the
tradable assets is determined by the matrices ρ and β.

In order to exclude arbitrage opportunities in the financial market we assume d ≥ k.
For technical reasons we suppose that

(M1) α is bounded,
(M2) there exist constants 0 < ε < K such that εIk ≤ (β(t, r )β∗(t, r )) ≤ K Ik for all

(t, r ) ∈ [0, T] × R
m,

where β∗(t, r ) is the transpose of β(t, r ), and Ik is the k-dimensional unit matrix.
Before we proceed with the model description we will illustrate the range of possible

applications by giving some examples of derivatives our model may apply to.

EXAMPLE 2.1. Weather derivatives are a typical example of financial instruments de-
rived from nontradable underlyings. One of the most common types of weather deriva-
tives are based on the so-called accumulated heating degree days (cHDD). The heating
degree of a day with average temperature τ in Celsius degrees is defined as HDD =
max{0, 18 − τ }, that is, HDD describes the (positive) difference between the average
daily temperature measured and the temperature above which rooms are usually heated.
The cHDDs are defined as a moving average sum of HDDs over a fixed time length, for
instance a month. Real data shows the cHDD to be almost lognormally distributed, and
therefore they can be modelled as geometric Brownian motions (see Davis 2001). This
means that in (2.1) we would have to choose b(t, Rt) = α1 Rt and ρ(t, Rt) = α2 Rt, with
α1 ∈ R and α2 ∈ R \ {0} depending on the season. Tradable assets that are more or less
correlated with average temperatures are for example, electricity futures and natural gas
futures.

The derivative explained in the next example is based on more than one underlying.
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EXAMPLE 2.2. Spread options in general involve two or more underlying structures
(prices, indices, interest rates, and many other possible quantities), and measure the
distance between them. We do not go into details since spread options are well known
(see Carmona and Durrleman 2003 for an overview). For simplicity we refer to a two-
dimensional example of Crack spreads.

Crack spreads consist in the simultaneous purchase or sale of crude against the sale or
purchase of refined petroleum products. We concentrate on the kerosene crack spread,
which pits crude oil price (co) against kerosene price (ke). A company producing kerosene
(from crude oil) wishes to cover part of its risk arising from a sudden boost of the
crude oil price by buying kerosene crack spreads. It thereby faces the problem that
kerosene trading is not done on a sufficiently liquid market to warrant a futures contract
or some other type of exchange-traded contract. So derivative contracts of this type
must be arranged on OTC basis.

Knowing that the price of heating oil (ho) is highly correlated with the kerosene price—
except during the Iraq war—crack spreads themselves can be hedged by using heating
oil futures.

We model prices in the following way, where the superscripts represent the underlying
products,

d Rke
t = Rke

t

(
b1dt + γ2dW1

t + γ3dW2
t + γ4dW3

t

)
d Rco

t = Rco
t

(
b2dt + γ1dW1

t

)
d Sho

t = Sho
t

(
b3dt + β1dW1

t + β2dW2
t

)
,

where we assume that b1, b2, b3 ∈ R, γ1, γ2, γ3, γ4, β1, β2 ∈ R\{0} and the correlation be-
tween heating oil and kerosene is given by σ = (γ2β1 + γ3β2)/

√
(γ 2

2 + γ 2
3 + γ 2

4 )(β2
1 + β2

2 ).
A European call on the spread is of the form ξ (Rke

T , Sco
T ) = (Rke

T − Sco
T − K)+, with K

being the strike.
Throughout let U be the exponential utility function with risk aversion coefficient

η > 0, that is

U(x) = −e−ηx.

In what follows let (t, r ) ∈ [0, T] × R
m. By an investment strategy we mean any predictable

process λ = (λi )1≤i≤k with values in R
k such that the integral process

∫ t
0 λi

r
d Si

r
Si

r
is defined

for all i ∈ {1, . . . , k}. We interpret λi as the value of the portfolio fraction invested in the
i-th asset. Investing according to a strategy λ leads to a total gain due to trading during
the time interval [t, s] which amounts to Gλ,t

s = ∑k
i=1

∫ s
t λi

u
d Si

Si
u

. We will denote by Gλ,t,r
s

the gain conditional on Rt = r .

REMARK 2.3. As one can see the wealth process is given by

Gλ,t,r
s =

k∑
i=1

∫ s

t
λi

u

[
αi

(
u, Rt,r

u

)
du + βi

(
u, Rt,r

u

)
dWu

)]
,

and hence does not depend on the value of the correlated price process! This is a feature
of our model that will later imply the indifference price at time t to depend only on the
value of the index process at a given time t.
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Let At,r be the set of all strategies λ such that E
∫ T

t |λsβ(s, Rt,r
s )|2ds < ∞ and the

family {e−ηGλ,t,r
τ : τ is a stopping time with values in [t, T]} is uniformly integrable. If

λ ∈ At,r , then we say that λ is admissible. We use the same admissibility criteria as in
Section 3 in Hu et al. (2005), so that later we may invoke their results. The maximal
expected utility at time T , conditioned on the wealth to be v at time t and the index to
satisfy Rt = r , is defined by

V 0(t, v, r ) = sup
{

EU
(
v + Gλ,t,r

T

)
: λ ∈ At,r}.(2.3)

One can show that there exists a strategy π , called optimal strategy, such that EU(v +
Gπ,t,r

T ) = V 0(v, t, r ). The convexity of the utility functions implies that π is a.s. unique
on [t, T], and it follows from Theorem 7 in Hu et al. (2005) that π ∈ At,r .

Suppose an investor is endowed with a derivative F(RT) and is keeping it in his portfolio
until maturity T . Then his maximal expected utility is given by

VF (t, v, r ) = sup
{

EU
(
v + Gλ,t,r

T + F
(
Rt,r

T

))
: λ ∈ At,r}.(2.4)

Also in this case there exists an optimal strategy, denoted by π̂ , that satisfies EU(v +
G π̂ ,t,r

T + F(Rt,r )) = VF (v, t, r ).
The presence of the derivative F(RT) leads to a change in the optimal strategy from π

to π̂ . The difference

� = π̂ − π

is needed in order to hedge, at least partially, the risk associated with the derivative in the
portfolio. We therefore call � derivative hedge. In the following sections we shall analyze
by how much the optimal strategies change if a derivative is added to the portfolio, and
we aim at getting an explicit expression for the derivative hedge �.

One can easily show that for all (t, r ) ∈ [0, T] × R
m there exists a real number p(t, r )

such that for all v ∈ R

VF (t, v − p(t, r ), r ) = V 0(t, v, r ).

If an investor has to pay p(t, r ) for the derivative F(Rt,r
T ), then he is indifferent between

buying and not buying the derivative. Therefore the number p(t, r ) is called indifference
price at time t and level r.

It turns out that the derivative hedge � is closely related to the indifference price of
the derivative. The derivative either diversifies or amplifies the risk exposure of the
portfolio. The difference between π̂ and π measures the diversifying impact of F .
The price sensitivity, that is the derivative of p relative to the index evolution, is also
a measure of the diversification of F (which will be called diversification pressure of the
derivative F). We will see that the derivative hedge is indeed equal to the price sensitivity
multiplied with some correlation parameters.

The problem of finding the optimal strategies π and π̂ is a standard stochastic control
problem. One can tackle it by solving the related HJB equation, using a verification
theorem and proving a uniqueness result. This approach has been chosen for example in
Ankirchner et al. (2007). Here, however, we prefer a stochastic approach, using the fact
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that the stochastic control problem can be solved by finding the solution of a BSDE. In
the following section we briefly recall the definition of a BSDE.

3. SOLVING STOCHASTIC OPTIMAL CONTROL PROBLEMS VIA BSDE

Let H2(Rd ) be the set of all R
d -valued predictable processes ζ such that E

∫ T
0 |ζt|2 dt <

∞, and let S2(R) be the set of all R-valued predictable processes δ satisfying
E(sups∈[0,T] |δs |2) < ∞. By S∞(R) we denote the set of all essentially bounded R-
valued predictable processes. Let ξ be FT-measurable and f a predictable mapping de-
fined on � × [0, T] × R × R

d with values in R. A solution of the BSDE with terminal
condition ξ and generator f is defined to be a pair of processes (Y, Z) ∈ S2(R) × H2(Rd )
satisfying

Yt = ξ −
∫ T

t
Zs dWs +

∫ T

t
f (s, Ys, Zs) ds, t ∈ [0, T].

Let us now come back to our control problem of finding the optimal investment strategy
π and π̂ respectively. It is known that there exists a quadratic BSDE which solves these
control problems (see for example, Hu et al. 2005). We first specify the generator of the
suitable BSDE, starting with π̂ .

Fix again (t, r ) ∈ [0, T] × R
m. Let ϑ(t, r ) = β∗(t, r )(β(t, r )β∗(t, r ))−1α(t, r ) and

C(t, r ) = {xβ(t, r ) : x ∈ R
k}. Observe that our assumptions imply that ϑ(t, r ) is bounded.

The distance of a vector z ∈ R
d to the closed and convex set C(t, r ) will be defined as

dist(z, C(t, r )) = min{|z − u| : u ∈ C(t, r )}. Let f be the deterministic function

f : [0, T] × R
m × R

d → R, (t, r , z) �→ zϑ(t, r ) + 1
2η

|ϑ(t, r )|2

−η

2
dist2

(
z + 1

η
ϑ(t, r ), C(t, r )

)
.

Since d ≥ k, we have to find the orthogonal projection of the d−dimensional vector z to
the linear space C(t, r ) of image strategies. In Hu et al. (2005) the set C(t, r ) is understood
as imposing restrictions on the investor when trading in the market that happens to be
convex in the setting given.

Notice that f is differentiable in z and satisfies the growth condition

| f (t, r , z)| ≤ c(1 + |z|2) a.s.

with some c ∈ R+. The growth condition along with the boundedness of the terminal
condition guarantees that there exists a unique solution (Ŷt,r , Ẑt,r ) ∈ S∞(R) ⊗ H2(Rd )
of the BSDE

Ŷt,r
s = F

(
Rt,r

T

) −
∫ T

s
Ẑt,r

u dWu −
∫ T

s
f
(
u, Rt,r

u , Ẑt,r
u

)
du, s ∈ [t, T],(3.1)

(see Theorem 2.3 and 2.6. in Kobylanski 2000). Notice that the terminal condition of the
BSDE stems from a standard forward SDE. The system of equations consisting of (2.2)
and (3.1) is often called FBSDE.

The conditional maximal expected wealth, or in other words the value function of our
stochastic control problem, is equal to the utility of the starting point of the BSDE, that
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is

VF (t, v, r ) = −e−η(v−Ŷt,r
t )

(see Theorem 7 in Hu et al. 2005). Moreover we can reconstruct the optimal strategy π̂

starting from Ẑ. To this end denote by �C(t,r )(z) the projection of a vector z ∈ R
d onto

the linear subspace C(t, r ). If Rt = r , then the optimal strategy π̂t on [t, T] satisfies

π̂sβ
(
s, Rt,r

s

) = �C(s,Rt,r
s )

[
Ẑt,r

s + 1
η
ϑ

(
s, Rt,r

s

)]
, s ∈ [t, T].(3.2)

The last statement follows equally from Theorem 7 in Hu et al. (2005). Since
ϑ(s, r ) ∈ C(t, r ) for all (t, r ) ∈ [0, T] × R

m, equation (3.2) simplifies to π̂sβ(s, Rt,r
s ) =

�C(s,Rt,r
s )[Ẑ

t,r
s ] + 1

η
ϑ(s, Rt,r

s ).
Analogously, let (Yt,r , Zt,r ) be the solution of

Yt,r
s = −

∫ T

s
Zt,r

u dWu −
∫ T

s
f
(
u, Rt,r

u , Zt,r
u

)
du, s ∈ [t, T],(3.3)

which represents a stochastic control problem as above, just without the derivative as
terminal condition, that is the derivative is not in the portfolio. In this case the maximal
expected utility verifies

V0(t, v, r ) = −e−η(v−Yt,r
t ),

and the optimal strategy π on [t, T] satisfies

πsβ
(
s, Rt,r

s

) = �
C
(

s,Rt,r
s

) [
Zt,r

s + 1
η
ϑ

(
s, Rt,r

s

)]
, s ∈ [t, T].(3.4)

Since �C(s,Rt,r
s ) is a linear operator, the derivative hedge is given by the explicit formula

�sβ
(
s, Rt,r

s

) = �C(s,Rt,r
s )

[
Ẑt,r

s − Zt,r
s

]
,

which will be further determined in the subsequent sections.

4. THE MARKOV PROPERTY OF THE INDIFFERENCE PRICES

In this section we will establish the Markov property of the indifference prices. This will
follow from the fact that the solutions of the BSDEs (3.1) and (3.3) are deterministic
functions of time and the underlying. To give the precise statement we need to introduce
the following σ -algebras. Fixing t ∈ [0, T], we denote by Dm the σ -algebra generated by
the functions r �→ E[

∫ T
t φ(s, Rt,r

s ) ds], where t ∈ [0, T] and φ is a bounded continuous
R−valued function.

Moreover we assume that the mapping (t, r ) �→ ϑ(t, r ) is Lipschitz continuous in r,
noting that due to (M1) and (M2) this is guaranteed if β and α are Lipschitz continuous.

LEMMA 4.1. There exist B[0, T] ⊗ Dm-measurable deterministic functions u and û :
[0, T] × R

m → R such that

Yt,r
s = u

(
s, Rt,r

s

)
and Ŷt,r

s = û
(
s, Rt,r

s

)
,

for P ⊗ λ-a.a. (ω, s) ∈ � × [t, T].
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Proof. The generator function f is a polynomial of the components of z of at most
second degree. This implies, together with the assumption that ϑ is Lipschitz continuous
in r, that there exist functions fn : [0, T] × R

m × R
d → R, globally Lipschitz continuous

in z, such that for all compact sets K ⊂ R
m × R

d the sequence fn converges to f uniformly
on [0, T] × K . Thus the statement follows from Theorem 7.6. �

Lemma 4.1 immediately implies that there exists a nice version of the indifference price
p as a function of (t, r ).

THEOREM 4.2. There exists a B[0, T] ⊗ Dm-measurable deterministic function p :
[0, T] × R

m → R such that for all v ∈ R, (t, r ) ∈ [0, T] × R
m

VF (t, v − p(t, r ), r ) = V 0(t, v, r ).(4.1)

Proof. Let v ∈ R, (t, r ) ∈ [0, T] × R
m be given. Recall that VF (v, t, r ) = −e−η(v−Ŷt,r

t )

and V0(v, t, r ) = −e−η(v−Yt,r
t ). Then put p(t, r ) = u(t, r ) − û(t, r ), where u and û are given

from Lemma 4.1. �
In the remainder the function p is always assumed to be measurable in both t and r.

In fact it inherits this property from the functions u and û.

We now turn to an explicit description of the optimal strategies, and in particular their
difference, the derivative hedge. These will be derived from the BSDE solutions of the
preceding section. We start by noting that similarly to the indifference price the optimal
strategies only depend on the time and the index process R.

THEOREM 4.3. There exist B[0, T] ⊗ Dm-measurable deterministic functions ν and ν̂,
defined on [0, T] × R

m and taking values in R
d such that for (t, r ) ∈ [0, T] × R

m, the optimal
strategies, conditioned on Rt = r , are given by πs = ν(s, Rt,r

s ) and π̂s = ν̂(s, Rt,r
s ) for all

s ∈ [t, T].

Proof. Fix (t, r ) ∈ [0, T] × R
m. Theorem 7.6 implies that there exist B[0, T] ⊗ Dm-

measurable deterministic functions v and v̂ mapping [0, T] × R
m to R

m such that for all
s ∈ [t, T]

Zt,r
s = v

(
s, Rt,r

s

)
ρ
(
s, Rt,r

s

)
and Ẑt,r

s = v̂
(
s, Rt,r

s

)
ρ
(
s, Rt,r

s

)
.

Now let γ (t, r ) = �C(t,r )[v(t, r )ρ(t, r ) + 1
η
ϑ(t, r )] and γ̂ (t, r ) = �C(t,r )[̂v(t, r )ρ(t, r ) +

1
η
ϑ(t, r )]. Then, by (3.2) and (3.4), the optimal strategies conditioned on Rt = r

satisfy

π̂sβ
(
s, Rt,r

s

) = γ̂
(
s, Rt,r

s

)
and πsβ

(
s, Rt,r

s

) = γ
(
s, Rt,r

s

)
,

for all s ∈ [t, T]. Since the rank of β(t, r ) is k, then both ν̂(t, r ) = γ̂ (t, r )β∗(t, r )
(β(t, r )β∗(t, r ))−1 and ν(t, r ) = γ (t, r )β∗(t, r )(β(t, r )β∗(t, r ))−1 are well defined. Then
uniqueness of π and π̂ yields the result. �

REMARK 4.4. Theorem 4.3 implies that the optimal strategies are the so-called Markov
controls.

We close this section by noting that Theorem 4.2 implies a dynamic principle for
the indifference price. Abbreviate A = A0,r for some r ∈ R

m. For any stopping time
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τ ≤ T andFτ -measurable random variable Gτ let VF (τ, Gτ ) = esssup{E[U(Gτ + Gλ,τ
T +

F(R0,r
T )|Fτ ] : λ ∈ A}. Similarly we define V0(τ, Gτ ).

COROLLARY 4.5. We have

VF(
τ, Gτ − p

(
τ, R0,r

τ

)) = V0(τ, Gτ ).

Proof. As is shown in Prop. 9 in Hu et al. (2005), the value function VF satisfies the
dynamic principle

VF(
τ, Gτ − p

(
τ, R0,r

τ

)) = U
(
Gτ − p

(
τ, R0,r

τ

) − Ŷ0,r
τ

)
.

Since p(τ, R0,r
τ ) = Yτ,R0,r

τ
τ − Ŷτ,R0,r

τ
τ = Y0,r

τ − Ŷ0,r
τ we obtain VF (τ, Gτ − p(τ, R0,r

τ )) =
U(Gτ − Y0,r

τ ) = V0(τ, Gτ ). �

5. DIFFERENTIABLE INDIFFERENCE PRICES AND EXPLICIT
HEDGING STRATEGIES

If we impose stronger conditions on the coefficients of the index process R and the
function F , then we can show that the price function p is differentiable in r, and we can
obtain an explicit representation of the derivative hedge in terms of the price gradient.
To this end we need to introduce the following class of functions.

DEFINITION 5.1. Let n, p ≥ 1. We denote by Bn×p the set of all functions h : [0, T] ×
R

m → R
n×p, (t, x) �→ h(t, x), differentiable in x, for which there exists a constant C > 0

such that sup(t,x)∈[0,T]×Rm

∑m
i=1 | ∂h(t,x)

∂xi
| ≤ C, for all t ∈ [0, T] we have supx∈Rm

|h(t,x)|
1+|x| ≤ C,

and x �→ ∂h(t,x)
∂x is Lipschitz continuous with Lipschitz constant C.

We will assume that the coefficients of the index diffusion satisfy in addition to (R1)

(R2) ρ ∈ Bm×d, b ∈ Bm×1, and
(R3) F is a bounded and twice differentiable function such that

∇F · ρ ∈ B1×d and
m∑

i=1

bi (t, r )
∂

∂ri
F(r ) + 1

2

m∑
i , j=1

[ρρ∗]i j (t, r )
∂2

∂ri∂r j
F(r ) ∈ B1×1.

The next result guarantees Lipschitz continuity and differentiability of the functions u
and û obtained from Theorem 4.1.

THEOREM 5.2. Suppose that (R1), (R2), and (R3) are satisfied. Besides, suppose that
the volatility matrix β and the drift density α are bounded, Lipschitz continuous in r,
differentiable in r and that for all 1 ≤ i ≤ k, 1 ≤ j ≤ d the derivatives ∇rβi j and ∇rαi are
also Lipschitz continuous in r. Then the functions u and û are Lipschitz continuous in r, and
continuously differentiable in r.

Proof. The theorem follows from Lemma 7.3 and Theorem 7.7 in Section 7. All we
have to show at this stage is that the assumptions of both results are satisfied. We only
show Conditions (7.8) and (7.11), since the remaining ones are easily seen to be fulfilled.

Notice that the conditions on α and β imply that ϑ is differentiable in r, and that ϑ and
∇rϑ are globally Lipschitz continuous in r. Moreover, since ϑ is bounded, ϑ2 is Lipschitz
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continuous in r, too. Recalling the definition of the generator f , note further that∣∣∣∣dist2
(

z + 1
η
ϑ(t, r ), C(t, r )

)
− dist2

(
z + 1

η
ϑ(t, r ′), C(t, r )

)∣∣∣∣
≤ 2

(
1
η
‖ϑ‖∞ + |z|

) ∣∣∣∣dist
(

z + 1
η
ϑ(t, r ), C(t, r )

)
− dist

(
z + 1

η
ϑ(t, r ′), C(t, r )

)∣∣∣∣
≤ 2

(
1
η
‖ϑ‖∞ + |z|

) ∣∣∣∣∣∣∣∣z + 1
η
ϑ(t, r ) − �C(t,r )

(
z + 1

η
ϑ(t, r )

)∣∣∣∣
−

∣∣∣∣z + 1
η
ϑ(t, r ′) − �C(t,r )

(
z + 1

η
ϑ(t, r ′)

)∣∣∣∣∣∣∣∣
≤ 4

(
1
η
‖ϑ‖∞ + |z|

)
1
η
|ϑ(t, r ) − ϑ(t, r ′)|, t ∈ [0, T], r , r ′ ∈ R

m, z ∈ R
d .

This shows that there exists a constant K ∈ R+ such that | f (t, r , z) − f (t, r ′, z)| ≤ K(1 +
|z|)|r − r ′|, and hence Assumption (7.8) of Lemma 7.3 is satisfied.

Observe that �C(t,r )(y) = yβ∗(ββ∗)−1β(t, r ) for all y ∈ R
k, and hence the mapping

r �→ �C(t,r )(z + 1
η
ϑ(t, r )) is differentiable. Consequently, also f is differentiable and for

t ∈ [0, T], r ∈ R
m and z ∈ R

d we have

∇r f (t, r , z) = z∇rϑ(t, r ) + 1
η
ϑ(t, r )∇rϑ(t, r )

− η

(
z + 1

η
ϑ(t, r ) − �C(t,r )

(
z + 1

η
ϑ(t, r )

))
×

(
1
η
∇rϑ(t, r ) − ∇r�C(t,r )

(
z + 1

η
ϑ(t, r )

))
.

By using that ϑ, ∇rϑ, β and ∇rβ are Lipschitz continuous and bounded, it is straight-
forward to show that for all t ∈ [0, T], r , r ′ ∈ R

m and z, z′ ∈ R
d we have

|∇r f (t, r , z) − ∇r f (t, r ′, z′)| ≤ K(1 + |z| + |z′|) (|r − r ′| + |z − z′|),

and hence the generator satisfies Assumption (7.11) of Theorem 7.7.
Now Lemma 7.3 yields the Lipschitz continuity in r of the functions u and û.

Theorem 7.7 implies the differentiability of Ŷt,r and Yt,r with respect to r, and hence
also of u and û. �

As an immediate consequence we obtain smoothness of the indifference price function.

COROLLARY 5.3. Suppose that the assumptions of Theorem 5.2 are satisfied. Then the
indifference price function p is continuously differentiable in r.

Having shown smoothness of the indifference price, we can finally derive an explicit
formula for the derivative hedge in terms of the price gradient. To this end we denote the
conditional derivative hedge by �(t, r ) = ν̂(t, r ) − ν(t, r ), (t, r ) ∈ [0, T] × R

m.

THEOREM 5.4. Under the assumptions of Theorem 5.2, and with the notation of
Section 3, the derivative hedge satisfies

�(t, r ) = −∇r p(t, r )ρ(t, r )β∗(t, r )(β(t, r )β∗(t, r ))−1, (t, r ) ∈ [0, T] × R
m.(5.1)
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REMARK 5.5. Note that Theorem 5.4 implies that the derivative hedge at time t depends
only on Rt.

Proof of Theorem 5.4. Note that C(t, r ) is a linear subspace of R
d for all (t, r ) ∈

[0, T] × R
m. Therefore, the projection operator �C(t,r ) is linear and hence

�(t, r ) = (γ̂ (t, r ) − γ (t, r ))β∗(t, r )(β(t, r )β∗(t, r ))−1

=
(

�C(t,r )

[
Ẑt,r

t + 1
η
ϑ(t, r )

]
− �C(t,r )

[
Zt,r

t + 1
η
ϑ(t, r )

])
× β∗(t, r )(β(t, r )β∗(t, r ))−1

= (
�C(t,r )

[
Ẑt,r

t − Zt,r
t

])
β∗(t, r )(β(t, r )β∗(t, r ))−1.

It follows from Theorem 7.7 that Ẑt,r
t − Zt,r

t = (∇r û(t, r ) − ∇r u(t, r ))ρ(t, r ) =
−∇r p(t, r )ρ(t, r ), and hence we obtain the result. �

If the market consists of only one risky asset, then the optimal strategy simplifies to
the following formula.

COROLLARY 5.6. Let k = 1. Then the derivative hedge is given by

�(t, r ) = −〈β(t, r ), ∇r p(t, r )ρ(t, r )〉
|β(t, r )|2

= −

d∑
i=1

βi (t, r )
m∑

j=1

∂

∂r j
p(t, r )ρ j i (t, r )

d∑
i=1

β2
i (t, r )

, (t, r ) ∈ [0, T] × R
m.

Proof. Fix (t, r ) ∈ [0, T] × R
m. Note that C(t, r ) = {xβ(t, r ) : x ∈ R} is a one-

dimensional subspace of R
d . For all z = (zi )1≤i≤d ∈ R

d let g(z) = 〈β(r ,t),z〉
|β(t,r )|2 =

∑d
i=1 βi (t,r ) zi∑d

i=1 β2
i (t,r )

.
Then g(z)β(t, r ) is the orthogonal projection of z onto C(t, r ). Thus Theorem 5.4 yields
that �(t, r ) = −g(∇r p(t, r )ρ(t, r )). �

REMARK 5.7.

(1) Suppose the derivative F(RT) is traded on an exchange. By pretending the price
observed is approximately equal to an indifference price, the hedging formula (5.1)
provides a very simple tool for hedging the derivative. Notice that the risk aversion
coefficient η does not appear explicitly in (5.1).

(2) If k = d and the matrices β(t, r ) are all invertible, then our financial market is
complete and the derivative F(RT) can be fully replicated. Moreover the derivative
hedge satisfies

�(t, r ) = −∇r p(t, r )ρ(t, r )β−1(t, r ).

If S is chosen to be the index, that is R = S, then we obtain � = ( ∂ p
∂s1

(t, r )S1, . . . ,
∂ p
∂sk

(t, r )Sk). Moreover, the number of shares to invest into asset i is given by
�i (t,r )
S i (t,r ) = ∂ p

∂si
. Thus � coincides with the classical “delta hedge.”



PRICING AND HEDGING OF DERIVATIVES 301

EXAMPLE 5.8. As in Example 2.1 suppose that R is the moving average cHDD process
modelled as a geometric Brownian motion, and assume that there exists one tradable
correlated risky asset. More precisely let d = 2, k = m = 1, ρ = (α2 0), β = (β1 β2) with
α2, β1, β2 ∈ R \ {0}. Then

�(t, r ) = −α2
∂ p(t, r )

∂r
β1

β2
1 + β2

2

.

EXAMPLE 5.9. Applying our results to Example 2.2, we have to take m = 2, k = 2 and
d = 3. Hence

ρ =
(

γ1 0 0
γ2 γ3 γ4

)
, β =

(
γ1 0 0
β1 β2 0

)
, β∗(ββ∗)−1 = 1

γ1β2

⎛⎝ β2 0
−β1 γ1

0 0

⎞⎠ .

With a simple computation we have for (t, r ) ∈ [0, T] × R
m

�C(t,r )[∇r p(t, r )ρ(t, r )] =
(

γ1
∂

∂r1
p(t, r ) + γ2

∂

∂r2
p(t, r ) γ3

∂

∂r2
p(t, r ) 0

)
.

Equation (5.1) applied to our example produces the following Delta hedge for (t, r ) ∈
[0, T] × R

2

�(t, r ) =
(

− ∂

∂r1
p(t, r ) +

(
β1γ3

γ1β2
− γ2

γ1

)
∂

∂r2
p(t, r ) − γ3

β2

∂

∂r2
p(t, r )

)
,

where r1 represents the crude oil and r2 the kerosene variable. If γ4 = 0 then we have a
perfect hedge and if γ3 = 0, then the price of heating oil does not play a role in the hedge,
as one would expect.

6. PRICING BY MARGINAL UTILITY

Suppose there is no exchange and the derivative F(RT) is sold OTC. What is a reasonable
price a seller could ask for the derivative? The indifference price seems to be a natural
candidate, though it has the disadvantage that the price of a single derivative depends
on the total quantity sold, that is the indifference price is nonlinear. For instance the
indifference price of 2 × F(RT) does not equal twice the indifference price of F(RT). In
order to obtain a linear version one may take the limit of the indifference price as the
quantity converges to 0. The object thus derived is the indifference price for a vanishing
amount of derivatives, and it is therefore called marginal utility price (MUP). Having
to pay the MUP for each derivative an investor is indifferent between buying and not
buying an infinitesimal amount of the derivative.

We continue requiring (R1)-(R3) to be satisfied. We update the notation and, for q ∈ R

and (t, r ) ∈ [0, T] × R
m define by p(t, r , q) the indifference price of q units of F(Rt,r

T ),
that is p(t, r , q) is the unique real satisfying

sup
λ

{
EU

(
v + Gλ,t,r

T + q F
(
Rt,r

T

) − p(t, r , q)
} = sup

λ

{
EU

(
v + Gλ,t,r

T

)}
.
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The price of one unit is equal to p(t,r ,q)
q , (q �= 0), and the MUP is defined by

MUP(t, r ) = ∂

∂q
p(t, r , q)

∣∣∣∣
q=0

.

Recall that p(t, r , q) = Yt,r
t − Ŷ t,r ,q

t , where (Yt,r , Zt,r ) is the solution of BSDE (3.3) and
(Ŷt,r ,q , Ẑt,r ,q ) is the solution of the BSDE

Ŷt,r ,q
s = q F

(
Rt,r

T

) −
∫ T

s
Ẑt,r ,q

u dWu −
∫ T

s
f
(
u, Rt,r

u , Ẑt,r ,q
u

)
du, s ∈ [t, T].

Naming ξ (q) = q F(Rt,r
T ), then clearly ξ (q) is a globally bounded differentiable Lip-

schitz function (with bounded derivatives). The boundedness of ξ is trivial since F is
bounded and we are only interested in the differentiability of the process with relation
to q in a neighborhood of zero. And so, due to the boundedness of F and the quadratic
growth hypothesis for f the conditions of Theorem 7.8 are satisfied. Hence, the process
Ŷt,r ,q is continuous in t and continuously differentiable in q.

Writing the BSDE differentiated with respect to q gives

∂

∂q
Ŷt,r ,q

s = F
(
Rt,r

T

) −
∫ T

s

∂

∂q
Ẑt,r ,q

u dWu

−
∫ T

s
∇z f

(
u, Rt,r

u , Ẑt,r ,q
u

) ∂

∂q
Ẑt,r ,q

u du, s ∈ [t, T].

Setting q = 0 and renaming the processes for ease of notation we obtain

Ut,r
s = F

(
Rt,r

T

) −
∫ T

s
Vs dWs −

∫ T

s
∇z f

(
s, Rt,r

s , Zt,r
s

) · Vs ds.(6.1)

As an end product of these calculations we obtain the following explicit formula for the
(MUP) of our derivative.

THEOREM 6.1. The explicit formula for the Marginal Utility Price of the derivative
F(RT) is given by

MUP(t, r ) = Ut,r
t ,

where Ut,r
t is the first component of the solution pair of the BSDE

Ut,r
s = F

(
Rt,r

T

) −
∫ T

s
Vs dWs −

∫ T

s
∇z f

(
s, Rt,r

s , Zt,r
s

) · Vs ds.(6.2)

REMARK 6.2. Note that by performing a Girsanov change of probability measure
to the one making the process W̃ = W + ∫ ·

0 ∇z f (s, Rt,r
s , Zt,r

s ) ds a Brownian motion,
solving (6.2) reduces to taking conditional expectations with respect to the underlying
filtration. Hence, denoting by E(·) the stochastic exponential operator, we can represent
the marginal utility price explicitly by the following expression

MUP(t, r ) = E

[
E

(∫ ·

0
∇z f

(
s, Rt,r

s , Zt,r
s

)
dWs

)T

t
F

(
Rt,r

T

)]
.
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7. SOME MATHEMATICAL TOOLS: SMOOTHNESS
OF QUADRATIC FBSDE

7.1. Moment Estimates for BSDE with Random Lipschitz Condition

In the following we provide moment estimates for BSDE with generators that satisfy
Lipschitz conditions with random bounds for the slopes. More precisely, we assume that
for our generator f : � × [0, T] × R

d → R there exists an R+-valued predictable process
H such that for all (ω, t, z) ∈ � × [0, T] × R

d we have

| f (ω, t, z) − f (ω, t, z′)| ≤ Ht|z − z′|.(7.1)

We will assume that H is such that the stochastic integral
∫ ·

0 H dW with respect to a
Brownian motion W is a so-called BMO martingale. Recall that

∫ ·
0 H dW is a BMO

martingale (we also say it belongs to BMO) if and only if there exists a constant C ∈ R+
independent of ω such that for all stopping times τ with values in [0, T] we have

E
[∫ T

τ

H2
s ds

∣∣∣∣Fτ

]
≤ C, a.s.(7.2)

We refer to Kazamaki (1994) for basic information about BMO martingales. We will
abuse the definition and refer to the smallest C ∈ R+ that satisfies inequality (7.2) as the
BMO norm of H.

Throughout let W be a d-dimensional Brownian motion. Consider the BSDE

Yt = ξ −
∫ T

t
Zs dWs +

∫ T

t
f (s, Zs) ds, 0 ≤ t ≤ T,(7.3)

where ξ is a bounded FT-measurable random variable, and f satisfies (7.1) relative to a
predictable H with finite BMO norm.

We refer to Briand and Confortola (2008) for sufficient criteria for the existence of
solutions of such BSDEs.

The moment estimate we shall give next will be needed later for establishing smoothness
of the solution of the quadratic BSDE with respect to the parameters the terminal
condition depends on.

LEMMA 7.1. Suppose that for all β ≥ 1 we have
∫ T

0 | f (s, 0)| ds ∈ Lβ (P). Let p > 1.
Then there exist constants q > 1 and C > 0, depending only on p, T, and the BMO-norm
of H, such that we have

E
[

sup
t∈[0,T]

|Yt|2p
]

+ E

[(∫ T

0
|Zs |2 ds

)p]
≤ C

(
E

[
|ξ |2pq +

(∫ T

0
| f (s, 0)| ds

)2pq]) 1
q

.

Proof. This follows from Corollary 3.4 in Briand and Confortola (2008) by a straight-
forward generalization to the multidimensional case considered here. It can also be shown
with the method used in the proof of Theorem 6.1 in Ankirchner et al. (2007). �
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7.2. Differentiability of Quadratic FBSDE

Consider now a FBSDE of the form

X x
s = x +

∫ t

0
b
(
s, X x

s

)
ds +

∫ t

0
ρ
(
s, X x

s

)
dWs,

Yx
s = F

(
Xx

T

) −
∫ T

t
Zx

s dWs +
∫ T

t
f
(
s, X x

s , Zx
s

)
ds,

(7.4)

where b : [0, T] × R
m → R

m and ρ : [0, T] × R
m → R

m×d and W is the d−dimensional
Brownian motion of the preceding subsection. Note that ρ is a n × d matrix. We will
denote its transpose by ρ∗. The generator of the backward part is assumed to be a
P(Ft) ⊗ B(Rm) ⊗ B(Rd )-measurable process f : � × [0, T] × R

m × R
d → R such that

there exists a constant M ∈ R+ such that for all (t, x, z) ∈ [0, T] × R
m × R

d we have

| f (t, x, z)| ≤ M(1 + |z|2) a.s.(7.5)

Here P(Ft) denotes the σ -field of predictable sets with respect to the filtration (Ft).
Moreover we assume that

f is differentiable in x and z and

|∇z f (t, x, z)| ≤ M(1 + |z|) for all (t, x, z) ∈ [0, T] × R
m × R

d a.s.

(7.6)

We will give sufficient conditions for the process Yx in the solution of the FBSDE (7.4) to
be differentiable in x. A further assumption we need is that the coefficients of the forward
equation belong to the function space Bm×d and Bm×1 respectively (see Definition 5.1).
To simplify notation, to the pair (b, ρ) of coefficient functions we associate the second
order differential operator L = ∑m

i=1 bi (·) ∂
∂xi

+ 1
2

∑m
i , j=1[ρρ∗]i j (·) ∂2

∂xi ∂xj
.

We will assume that the coefficients of the forward equation (7.4) satisfy

(D1) ρ ∈ Bm×d, b ∈ Bm×1, and that
(D2) F : R

m → R is a twice differentiable function such that ∇F · ρ ∈ B1×d and LF ∈
B1×1.

It is known that the conditions (D1) and (D2) ensure that X x is differentiable in x and
its difference quotients can be nicely controlled. For the convenience of the reader we
quote a standard result which will be needed later. Denote by ei the unit vector in R

m in
the direction of coordinate i , 1 ≤ i ≤ m.

LEMMA 7.2. Suppose (D1) and (D2) are satisfied. For all x ∈ R
m, h �= 0 and i ∈

{1, . . . , m}, let ζ x,h,i = 1
h (F(X x+hei

T ) − F(Xx
T)). Then for every p > 1 there exists a C > 0,

dependent only on p and the bounds of b, ρ, F and its derivatives, such that for all x, x′ ∈ R
m

and h, h′ �= 0,

E
[|ζ x,h,i − ζ x′,h′,i |2p] ≤ C(|x − x′|2 + |h − h′|2)p.(7.7)

Proof. Note that by Ito’s formula F(Xx
t ) = F(Xx

0 ) + ∫ t
0 ∇F(Xx

s ) · ρ(s, Xx
s ) dWs +∫ t

0 LFds. Thus F(Xx
t ) is a diffusion with coefficients ρ̃(s, x) = ∇F(x) · ρ(s, x) and

b̃(s, x) = ∑m
i=1 bi (s, x) ∂ F(x)

∂xi
+ 1

2

∑m
i , j=1 ρi j (s, x) ∂2 F(x)

∂xi ∂xj
, (s, x) ∈ [0, T] × R

m. By (D2) we

have ρ̃ ∈ B1×d and b̃ ∈ B1×1. Therefore, by using standard results on stochastic flows (see
Lemma 4.6.3 in Kunita 1990), we obtain the result. �
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Notice that since F is bounded and the growth condition (7.5) holds, there exists a
unique solution (Yx, Zx) ∈ S∞(R) ⊗ H2(Rd ) of the BSDE in (7.4) for all x ∈ R

d . One
can even show that we may choose the family (Yx)x∈Rm such that it is continuous in x.

LEMMA 7.3. Let (D1), (D2), (7.5) and (7.6) be satisfied, and assume that F is bounded
and that there exists a constant K ∈ R+ such that for all t ∈ [0, T], x, x′ ∈ and z ∈ R

d

| f (t, x, z) − f (t, x′, z)| ≤ K(1 + |z|)|x − x′|.(7.8)

Then for all p > 1 there exists a constant C ∈ R+ such that for all x, x′ ∈ R
m,

E sup
t∈[0,T]

∣∣Yx
t − Yx′

t

∣∣2p ≤ C|x − x′|2p,(7.9)

E

[(∫ T

0

∣∣Zx
t − Zx′

t

∣∣2
dt

)p]
≤ C|x − x′|2p.(7.10)

In particular, Kolmogorov’s continuity criterion implies that there exists a measurable
process Ỹ : � × [0, T] × R

m such that (t, x) �→ Ỹx
t is continuous for a.a. ω; and for all

(t, x) ∈ [0, T] × R
m we have Ỹx

t = Yx
t a.s.

Proof. For α ∈ R, let χ (y) = eαy. By applying Ito’s formula to χ (Yx) and using stan-
dard arguments one can show that

∫ ·
0 Zx dW ∈ BMO with the BMO norm depending

only on the bound of F and the growth constant of f in z.
For all x, x′ ∈ R

m let Ut = Yx
t − Yx′

t , Vt = Zx
t − Zx′

t and ζ = F(Xx) − F(X x′
). We

use a line integral transformation in order to show that Ux can be seen as a BSDE with
generator satisfying a Lipschitz condition of the type (7.1). Define Jt = ∫ 1

0 ∇x f (t, X x
t −

ϑ(Xx
t − X x′

t ), Zx
t ) dϑ and Ht = ∫ 1

0 ∇z f (t, X x′
t , Zx′

t − ϑ(Zx
t − Zx′

t )) dϑ and observe that

Ut = ζ −
∫ T

t
Vs dWs +

∫ T

t

(
f
(
s, Xx

s , Zx
s

) − f
(
s, X x′

s , Zx
s

))
+ (

f
(
s, X x′

s , Zx
s

) − f
(
s, X x′

s , Zx′
s

))
ds

= ζ −
∫ T

t
Vs dWs +

∫ T

t

(
Js

(
Xx

s − X x′
s

) + Hs Vs
)

ds.

The moment estimate of Lemma 7.1 applied to the pair (U, V) leads to

E
[

sup
t∈[0,T]

|Ut|2p
]

+ E

[(∫ T

0
|Vs |2 ds

)p]

≤ C

(
E

[
|ζ |2pq +

(∫ T

0

∣∣Js
(
Xx

s − X x′
s

)∣∣ ds
)2pq]) 1

q

,
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for some constants C > 0 and q > 1. By (7.8) we have ∇x f (t, x, z) ≤ K(1 + |z|), and
hence

E
(∫ T

0

∣∣Js
(
Xx

s − X x′
s

)∣∣ ds
)2pq

≤ K2pq

(
E

(∫ T

0

(
1 + ∣∣Zx

s

∣∣)2
ds

)2pq) 1
2
(

E
(∫ T

0

∣∣Xx
s − X x′

s

∣∣2
ds

)2pq) 1
2

.

Lemma 7.1 implies that E(
∫ T

0 (1 + |Zx|)2 ds)2pq is bounded, and by standard results on
moment estimates of SDEs we have E(

∫ T
0 |Xx

s − X x′
s |2ds)2pq ≤ C′|x − x′|4pq for some

constant C′ ∈ R+ (see Theorem 3.2 in Kunita 2004). Moreover, the Lipschitz property
of F guarantees that there exists a constant C′′ such that E|ζ |2pq ≤ C′′|x − x′|2pq , and
hence the desired result follows. �

The following theorem guarantees pathwise continuous differentiability of an appro-
priate modification of the solution process.

THEOREM 7.4. Let (D1), (D2), (7.5), and (7.6) be satisfied, and suppose that F is
bounded and f satisfies (7.8). Besides suppose that ∇z f is globally Lipschitz continuous in
(x,z) and that ∇x f satisfies for all t ∈ [0, T], x, x′ ∈ and z, z′ ∈ R

d

|∇x f (t, x, z) − ∇x f (t, x′, z′)| ≤ K(1 + |z| + |z′|)(|x − x′| + |z − z′|).(7.11)

Then there exists a function � × [0, T] × R
m → R

m+1+d , (ω, t, x) �→ (Xx
t , Yx

t , Zx
t )(ω),

such that for almost all ω, Xx
t and Yx

t are continuous in t and continuously differentiable
in x, and for all x, (Xx

t , Yx
t , Zx

t ) is a solution of FBSDE (7.4). Moreover, there exists a
process ∇x Zx ∈ H2 such that the pair (∇xYx, ∇x Zx) solves the BSDE

∇xYx
t = ∇x F

(
Xx

T

)∇x Xx
T −

∫ T

t
∇x Zx

s dWs

+
∫ T

t

[∇x f
(
s, Xx

s , Zx
s

)∇x Xx
s + ∇z f

(
s, Xx

s , Zx
s

)∇x Zx
s

]
ds.

(7.12)

We will use Kolmogorov’s continuity criterion in order to prove the theorem.
Let x ∈ R

m. For all h �= 0, let �
x,h
t = 1

h (X x+hei
t − Xx

t ), Ux,h
t = 1

h (Yx+ei h
t − Yx

t ), Vx,h
t =

1
h (Zx+hei

t − Zx
t ) and ζ x,h = 1

h (ξ (x + hei ) − ξ (x)). We need the following estimates.

LEMMA 7.5. For all p > 1, x, x′ ∈ R
m, h, h′ �= 0 we have with some constant C

E
[

sup
t∈[0,T]

∣∣Ux,h
t − Ux′,h′

t

∣∣2p
]

≤ C(|x − x′|2 + |h − h′|2)p.(7.13)

Proof. Let p > 1. Note that for all h �= 0

Ux,h
t = ζ x,h −

∫ T

t
Vx,h

s dWs +
∫ T

t

1
h

[
f
(
s, X x+hei

s , Zx+hei
s

) − f
(
s, Xx

s , Zx
s

)]
ds.
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We use a line integral transformation in order to show that Ux,h can be seen as a BSDE
with random Lipschitz bound. To this end define two (Ft)-adapted processes by

Ax,h
t =

∫ 1

0
∇x f

(
t, Xx

t + ϑ
(
X x+hei

t − Xx
t

)
, Zx

t

)
dϑ,

Ix,h
t =

∫ 1

0
∇z f

(
t, X x+hei

t , Zx
t + ϑ

(
Zx+hei

t − Zx
t

))
dϑ.

Then

1
h

[
f
(
t, X x+hei

t , Zx+hei
t

) − f
(
t, Xx

t , Zx
t

)] = Ax,h
t �x,h

t + Ix,h
t Vx,h

t .

The growth condition (7.6) implies that |Ix,h | ≤ M(1 + |Zx| + |Zx+hei |), and hence∫ ·
0 Ix,hdW ∈ BMO. Thus we obtain a BSDE with generator satisfying condition (7.1).

Now let x, x′ ∈ R
m and h, h′ �= 0. Then the difference (Ux,h − Ux′,h′

, Vx,h − Vx′,h′
)

solves again a BSDE with generator of the type (7.1), namely

Ux,h
t − Ux′,h′

t = ζ x,h − ζ x′,h′ −
∫ T

t

(
Vx,h

s − Vx′,h′
s

)
dWs

−
∫ T

t

(
Ix,h(Vx,h

s − Vx′,h′
s

) + (
Ix,h
s − Ix′,h′

s

)
Vx′,h′ + Ax,h

s �x,h
s − Ax′,h′

s �x′,h′
s

)
ds.

Therefore Lemma 7.1 yields for q > 1

E
[

sup
t∈[0,T]

∣∣Ux,h
t − Ux′,h′

t

∣∣2p
]

≤ C

{
E

[
|ζ x,h − ζ x′,h′ |2pq +E

[(∫ T

0

(∣∣Ax,h
s �x,h

s − Ax′,h′
s �x′,h′

s

∣∣
+ ∣∣Ix,h

s − Ix′,h′
s

∣∣∣∣Vx′,h′ ∣∣) ds
)2pq

] 1
q
}

.

To treat the first term on the right hand side, use Lemma 7.2 to see that E[|ζ x,h −
ζ x′,h′ |2pq ]

1
q ≤ C(|x − x′|2 + |h − h′|2)p.

For the second term, recall that ∇z f is Lipschitz continuous, say with Lipschitz con-
stant L ∈ R+. We therefore have for any t ∈ [0, T]∣∣Ix,h

t − Ix′,h′
t

∣∣ ≤ L
(∣∣X x,h

t − X x′,h′
t

∣∣ + ∣∣Zx
t − Zx′

t

∣∣ + ∣∣Zx+hei
t − Zx′+h′ei

t

∣∣).
Now Cauchy-Schwarz’ inequality leads to

E

[(∫ T

0

∣∣Ix,h
s − Ix′,h′

s

∣∣∣∣Vx′,h′ ∣∣ ds
)2pq] 1

q

≤
(

E

[(∫ T

0

∣∣Ix,h
s − Ix′,h′

s

∣∣2
ds

)2pq]
E

[(∫ T

0
|Vx,h |2 ds

)2pq]) 1
2q

.
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So Lemma 7.3 and Lemma 4.5.6 in Kunita (1990) imply with some constant C

E

[(∫ T

0

∣∣Ix,h
s − Ix′,h′

s

∣∣2
ds

)2pq] 1
2q

≤ C(|x − x′|2 + |h − h′|2)p.

The term E[(
∫ T

0 |Vx,h |2 ds)2pq ] is seen to be bounded by an appeal to Lemma 7.3.

It remains to show that E[(
∫ T

0 |Ax,h
s �x,h

s − Ax′,h′
s �x′,h′

s | ds)2pq ]
1
q ≤ C(|x − x′|2 + |h −

h′|2)p. For this we separately estimate the two summands on the right hand side of the
following inequality∣∣Ax,h

s �x,h
s − Ax′,h′

s �x′,h′
s

∣∣ ≤ ∣∣Ax,h
s

∣∣∣∣�x,h
s − �x′,h′

s

∣∣ + ∣∣�x′,h′
s

∣∣∣∣Ax,h
s − Ax′,h′

s

∣∣.
First note that due to (7.8) we have for some constants C1, C2 . . .∫ T

0

∣∣Ax,h
s

∣∣∣∣�x,h
s − �x′,h′

s

∣∣ ds ≤ C1

(∫ T

0

(
1 + ∣∣Zx

s

∣∣)2
ds

) 1
2
(∫ T

0

∣∣�x,h
s − �x′,h′

s

∣∣2
ds

) 1
2

,

which implies, together with Lemma 7.1 and standard estimates of differences of the �x,h

(see Theorem 3.3 in Kunita 2004),

E
(∫ T

0

∣∣Ax,h
s

∣∣∣∣�x,h
s − �x′,h′

s

∣∣ ds
)2pq

≤ C2

(
E

(∫ T

0

∣∣�x,h
s − �x′,h′

s

∣∣2
ds

)2pq) 1
2

≤ C3(|x − x′|2 + |h − h′|2)pq .

Second, from (7.11) we obtain∫ T

0

∣∣�x′,h′
s

∣∣∣∣Ax,h
s − Ax′,h′

s

∣∣ds

≤ C4

∫ T

0

(
1 + ∣∣Zx

s

∣∣ + ∣∣Zx′
s

∣∣)(∣∣X x
s − X x′

s

∣∣ + ∣∣X x+hei
s − X x′+h′ei

s

∣∣ + ∣∣Zx
s − Zx′

s

∣∣) ds

and hence, with Lemma 7.3 and the moment estimates for X x,

E
(∫ T

0

∣∣�x′,h′
s

∣∣∣∣Ax,h
s − Ax′,h′

s

∣∣ds
)2pq

≤ C5

(
E

(∫ T

0

(∣∣X x
s − X x′

s

∣∣ + ∣∣X x+hei
s − X x′+h′ei

s

∣∣ + ∣∣Zx
s − Zx′

s

∣∣)2
ds

)2pq) 1
2

≤ C6(|x − x′|2 + |h − h′|2)pq .

Combining the estimates just derived, we conclude

E
[

sup
t∈[0,T]

∣∣Ux,h
t − Ux′,h′

t

∣∣2p
]

≤ C(|x − x′|2 + |h − h′|2)p.

This completes the proof of the lemma. �

Proof of Theorem 7.4. Note that by Lemma 7.3 we may assume that (t, x) �→ Yx
t is

continuous for all ω. Then Ux,h has continuous paths for all x ∈ R
m and h �= 0.
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Let Q be the collection of all pairs (x, h) where x is a vector of dyadic rationals in
R

m and h �= 0 a dyadic rational in R. Since inequality (7.13) is valid, Kolmogorov’s
continuity criterion implies that there exists a null set N such that for all ω ∈ Nc the
function Q � (x, h) �→ Ux,h can be uniquely extended to a continuous function from
R

m+1 into the space of continuous functions endowed with the sup norm (see Thm 74 or
75, Ch. IV, Protter 2004). Such a null set N can be chosen for any direction i in which we
differentiate, and hence there exists a modification of Yx such that for all t the mapping
x �→ Yx

t possesses continuous partial derivatives.
Finally it is straightforward to show that the derivative ∇xYx together with a process

∇x Zx, defined as an H2 limit of the processes Vx,h as h → 0, solve the BSDE (7.12). �

7.3. The Markov Property of FBSDE

The forward part of our FBSDE (7.4) is solved by a time inhomogeneous Markov
process. We will now investigate the consequences of this fact in more detail. Let us fix
an initial time t ∈ [0, T), as well as an initial state x to be taken by our forward process at
this time. Then, conditioned on taking the value x at time t, the forward process satisfies
the SDE

X t,x
s = x +

∫ s

t
b
(
r , X t,x

r

)
dr +

∫ s

t
ρ
(
r , X t,x

r

)
dWr ,(7.14)

where x ∈ R
m and s ∈ [t, T]. We will assume that the coefficients satisfy a growth and

a Lipschitz condition. More precisely, assume that there exists a constant C ∈ R+ such
that for all x, x′ ∈ R

m and t ∈ [0, T]

|b(t, x) − b(t, x′)| + |ρ(t, x) − ρ(t, x′)| ≤ C(|x − x′|),
|b(t, x)| + |ρ(t, x)| ≤ C(1 + |x|).

(7.15)

Condition (7.15) guarantees that there exists a unique solution of (7.14). It moreover
implies that X t,x

r is Malliavin differentiable and that its Malliavin gradient has a repre-
sentation involving, for (t, x) fixed, the global flow on the space of nonsingular linear
operators �t,x on R

m defined by the equation

�t,x
s = 1Rm +

∫ s

t
∇xb

(
u, Xt,x

u

)
�t,x

u du +
∫ s

t
∇xρ

(
u, Xt,x

u

)
�t,x

u dWu, s ≥ t.

Here ∇xb and ∇xρ describe the gradients of b, respectively, ρ existing in the weak sense
under (7.15), 1Rm the m × m unit matrix. The Malliavin gradient is then given by the
formula (see Nualart 1995, p. 126)

Dϑ Xt,x
s = �t,x

s

(
�

t,x
ϑ

)−1
ρ
(
ϑ, Xt,x

ϑ

)
, t ≤ ϑ ≤ s.(7.16)

With the Markov process X t,x starting at time t in x in mind, we now consider BSDE
of the form

Yt,x
s = F

(
X t,x

T

) −
∫ T

s
Zt,x

r dWr +
∫ T

s
f
(
r , X t,x

r , Zt,x
r

)
dr .(7.17)

In accordance with Section 3, we now assume that the generator is a deterministic Borel
measurable function f : [0, T] × R

m × R
d → R. Again we assume that f is differentiable
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in (x, z) and that there exists a constant M ∈ R+ such that for all (t, x, z) ∈ [0, T] × R
m ×

R
d we have

| f (t, x, z)| ≤ M(1 + |z|2) a.s. and |∇z f (t, x, z)| ≤ M(1 + |z|) a.s.(7.18)

for all (t, z) ∈ [0, T] × R
m. If F is bounded, then it follows from Theorem 2.3 and 2.6

in Kobylanski (2000) that there exists a unique solution (Yt,x, Zt,x) ∈ S∞(R) ⊗ H2(Rd )
of the BSDE (7.17). The next result states that the solution of the BSDE is already
determined by the forward process X t,x. In order to formulate it, for all m ∈ N we
denote by Dm the σ -algebra on R

m generated by the family of functions R
m � x �→

E
∫ T

t ϕ(s, X t,x
s ) ds, where t ∈ [0, T] and ϕ : [0, T] × R

m → R is bounded and continuous.

THEOREM 7.6. Let F : R
m → R be a bounded Borel function, suppose that f satisfies

(7.18) and the coefficients of the forward diffusion (7.15). Suppose that there exist functions
fn : [0, T] × R

m × R
d → R, globally Lipschitz continuous in (x, z), such that for almost

all ω and for all compact sets K ⊂ R
m × R

d the sequence fn converges to f uniformly on
[0, T] × K . Then there exist twoB[0, T] ⊗ Dm- andB[0, T] ⊗ Dm-measurable deterministic
functions u and v on [0, T] × R

m such that

Yt,x
s = u

(
s, X t,x

s

)
and Zt,x

s = v
(
s, X t,x

s

)
ρ
(
s, X t,x

s

)
,(7.19)

for P ⊗ λ-a.a. (ω, s) ∈ � × [t, T].

Proof. Let f n be Lipschitz continuous in (x, z) such that f n converges locally
uniformly on R+ × R

m × R
d . Let (t, x) ∈ [0, T] × R

m and denote by (Yn, Zn) =
((Yn)t,x, (Zn)t,x) the solution of the BSDE with generator f n and terminal condition
ξ = F(X t,x

T ). It follows from Theorem 2.8 in Kobylanski (2000) that Yn converges to
Yt,x in H∞(R), and Zn converges to Zt,x in H2(Rd ). By taking a subsequence if neces-
sary, we may assume that Zn converges to Zt,x a.s. on � × [0, T].

According to Theorem 4.1 in El Karoui, Peng, and Quenez (1997), there exist
B[0, T] ⊗ Dm- and B[0, T] ⊗ Dm-measurable deterministic functions un(t, x) and vn(t, x)
that satisfy the representations Yn

s = un(s, X t,x
s ) and Zn

s = vn(s, X t,x
s )ρ(s, X t,x

s ) for all
s ∈ [t, T] a.s. Now define

u(t, x) = lim inf
n

un(t, x) and v(t, x) = lim inf
n

vn(t, x).

Then Yt,x
s = u(s, X t,x

s ) and Zt,x
s = v(s, X t,x

s )ρ(s, X t,x
s ), a.s. �

By combining Theorem 7.6 with Theorem 7.4 we obtain a representation of the control
process Zt,x in terms of the derivative of Yt,x with respect to x.

THEOREM 7.7. Suppose that the assumptions of Theorem 7.6 are satisfied. Besides
assume that ∇z f is globally Lipschitz continuous, that (7.8) and (7.11) are satisfied, and
further that the forward coefficients satisfy the stronger conditions (D1) and (D2). Then
u(t, x) is differentiable in x for a.a. t ∈ [0, T]. Moreover,

Zt,x
s = ∇xu

(
t, X t,x

s

)
ρ
(
s, X t,x

s

)
,(7.20)

for P ⊗ λ-a.a. (ω, s) ∈ � × [t, T].
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Proof. Recall that X t,x
s is Malliavin differentiable and that the assumptions of

Lemma 7.3 are satisfied. Equation (7.9) implies that x �→ u(t, x) = Yt,x
t is Lipschitz

continuous. Therefore Yt,x
s = u(s, X t,x

s ) is Malliavin differentiable (see Proposition 1.2.2,
Nualart 1995). By Theorem 7.4, u(t, x) is differentiable in x, and by the chain rule
we have DϑYt,x

s = ∇xu(s, X t,x
s ) Dϑ X t,x

s . Since due to (7.16) Ds X t,x
s = ρ(s, X t,x

s ) and
Zt,x

s = DsYt,x
s (the later following f.ex. from Lemma 5.1 in El Karoui et al. 1997),

Theorem 7.6 implies (7.20). �

7.4. Differentiability of Quadratic BSDE with Parameterized Terminal Condition

For this subsection we pass to a more abstract parameter dependence of the solution
of a BSDE than studied above in a pair of forward and backward SDE. We consider the
BSDE

Yx
t = ξ (x) −

∫ T

t
Zx

s dWs +
∫ T

t
f
(
s, Zx

s

)
ds, t ∈ [0, T], x ∈ R

m.(7.21)

Throughout we assume that

(E1) R
m � x �→ ξ (x) ∈ R is a bounded random field which as a function of x is differ-

entiable with bounded partial derivatives; ∇ξ (x) is also Lipschitz in x; also f (t, 0)
is (Ft)−adapted and satisfies f (t, 0) ∈ Lp for all p ≥ 1.

(E2) there exists M ∈ R+ such that | f (t, z)| ≤ M(1 + |z|2) a.s.; f is differentiable in z
such that |∇z f (t, z)| ≤ M(1 + |z|) for all (t, z) ∈ [0, T] × R

d a.s.
(E3) for all x ∈ R

m, h �= 0 and i ∈ {1, . . . , m}, let ζ x,h,i = 1
h (ξ (x + hei ) − ξ (x)). Then for

every p > 1 there exists a C > 0, dependent only on p, such that for all x, x′ ∈ R
m

and h, h′ �= 0,

E[|ζ x,h,i − ζ x′,h′,i |2p] ≤ C(|x − x′|2 + |h − h′|2)p.(7.22)

Although the terminal condition does not depend on a forward diffusion (see
Lemma 7.2 for a derivation of (7.22) in a FBSDE setting), Hypothesis (E1)-(E3) allow
to apply the methods we used in Subsection 7.2 and obtain the following theorem.

THEOREM 7.8. Let (E1), (E2), and (E3) be satisfied. Then there exists a function
� × [0, T] × R

m → R
1+d , (ω, t, x) �→ (Yx

t , Zx
t )(ω), such that for almost all ω, the process

Yx
t is continuous in t and continuously differentiable in x, and for all x, (Yx

t , Zx
t ) is a solution

of BSDE (7.21). Moreover, there exists a process ∇x Zx ∈ H2(Rm×d ) such that the pair
(∇xYx, ∇x Zx) solves the BSDE

∇xYx
t = ∇xξ (x) −

∫ T

t
∇x Zx

s dWs +
∫ T

t

[∇z f
(
s, Zx

s

)∇x Zx
s

]
ds.

Proof. Conditions (E1) and (E3) guarantee that the solutions of the BSDE (7.21) exist
and (Yx, Zx) ∈ S∞(R) ⊗ H2(Rd ).

Condition (E1), (E2), (E3), and the BMO property of the martingale
∫ ·

0 ZxdW allow us
to prove moment estimates that correspond to Lemma 7.1, Lemma 7.3, and Lemma 7.5.
Hence a simple adaptation of the proof of Theorem 7.4 provides the proof of
Theorem 7.8. �
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